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ABSTRACT 

The important issue in  the main applications of statistical represented by the distribution and the assumptions for 

the parent population (from which the sample is drawn) has a specific distribution characteristics to be represented 

community representation, but in many cases  does not know the form of the  basis distribution  so we needs statistical 

techniques do not depend on the distribution or assumptions about the phenomenon required study                                     

(depend on the free distribution for the data), and these methods are the nonparametric regression methods that depend 

directly on the data when estimating equation. 

In this research was review some methods in nonparametric regression methods, like the method,                      

(Local polynomial regression) the some methods for estimating the smoothing parameters (with one of these methods have 

been proposed to find an initial value for the smoothing  parameter with Kernel functions) , and then  compared the results 

of the methods mentioned above,  among themselves using tests and statistical standards following: (MSE, RMSE , 2R ,

adjR2 , and F-statistic). That by application for the real data is the (elements of climate), daily average temperatures for the 

period from (1/1/2011 to 31/12/2013) registered with the Directorate of Meteorological and Seismology in Sulaimani with 

different sample sizes 

(365, 730,1095), to show which the sample size with climate data and geography is more efficient with  simple 

nonparametric regression model (Local Linear) and multiple regression model (Additive model ).To achieve the objective 

of this study we will  using statistical programs through the program (SYSTA- 12). 

KEYWORDS: Nonparametric Models by Using Smoothing Kernel Function with Application 

1. INTRODUCTION  

The important issue in statistical applications is knowing distribution for population we need study and knowledge 

of the properties of that community to be represented community representation intact ,through statistical methods 

commonly so over the past years were distributions parametric debated topic of many researchers as assume modalities 

parametric that the sample comes from the population his known family of distributions, including normal family 

(Gaussian) or family (Gamma) and then work to estimate the parameters unknown to those families using methods               

(MLE, Moments, Bays) and other methods, or work tests  for confidence limits or interval of confidence for the parameters 

unknown, depending on the sample, but those assumptions mentioned above are often strict because distribution teachers 

are supposed to not be necessarily the actual distribution.  

The philosophy of statistics in terms of the mechanism of the application is to try different modeling phenomena 

models are what can be closer to reality, that these examples measured the degree of strength depending on the degree of 
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convergence with statistical evidentiary properties. Then regression is the most widely used of all analyses, modeling linear 

broadest sense well understood in both developed and in addition there is a variety of techniques useful to verify the 

assumptions involved. However nonparametric regression aims to provide a means of modeling and even when appropriate 

linear models not yet been brought into question and smoothing techniques are still useful by enhancing scatter plots to 

display the data infrastructure. 

Today regression models are one of the most important varieties statistical theory and so for her to researchers in 

various fields of science and humanity of scientific solutions to their problems and because of the diverse areas of work 

had to be variations on the other. On the basis of this divided regression models into two classes essential to the nature of 

the data, namely (parametric regression models and nonparametric regression models), and that's where the nonparametric 

regression need to restrictions or conditions less than parametric models and this is precisely who made the tool of 

nonparametric regression models very desirable to researchers to the fact that the actual data is not always have ideal 

specifications. So these models evolved in many areas and are used by scientists in the fields such as                             

(Computer Engineering to distinguish the picture and sound, Geography, Physics, Economics, Medicine, Environment, 

etc…). 

The parametric regression and nonparametric regression represent two different ways in the regression analysis, 

but this does not mean that the method prevents the use of other. For example, the study of multiple regressions in general 

will produce the problems dimensional suffered by most researchers comply and prevent their progress toward a general 

state of univariate to the binary variables and then multivariate based on the developing modalities nonparametric analysis. 

2. AIM OF THE PAPER 

The aims of this paper to analysis nonparametric models (Local polynomial regression model) comparing with the 

linear regression model with different sample sizes and different bandwidth (h).  

3. THEORETICAL PART  

Nonparametric Regression Models 

The traditional nonlinear regression model (described in the Appendix on nonlinear regression) fits the model 

y� = f�β, x́�	 +	ε� 

Where β = (β
�
, ...,	β



) is a vector of parameters to be estimated, and  

x́�= (x�, ... , x�) is a vector of predictors for the (i��	 of (n) observations; the errors ( ε�	 are assumed to be 

normally and independently distributed with 

Mean (0) and constant variance (σ�). The function f(·), relating the average value of the response (y) to the 

predictors, is specified in advance, as it is in a linear regression model. 

The general nonparametric regression model is written in a similar way, but the function (f) is unspecified 

y� = f	�	x́�	 +	ε�                                                                                                                                                        (1) 

= f (x��, x��, … , x��	 + 	ε�  
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With ( ) 0=εE  , ( ) 2
εσε =iV ,  ( ) 0, =jiCov εε   for ji ≠  

The object of nonparametric regression is to estimate the regression function f (·) directly, rather than to estimate 

parameters. Most methods of nonparametric regression to assume that f (·) is a smooth, continuous function  as in 

nonlinear regression. An important special case of the general model is nonparametric simple regression, where there is 

only one predictor: 

y� = f(x�) + ε�                                                               (2) 

Nonparametric simple regression is often called ‘scatter plot smoothing’ because an important application is to 

tracing a smooth curve through a scatter plot of (y) against (x). Because it is difficult to fit the general nonparametric 

regression model when there are many predictors, and because it is difficult to display the fitted model when there are 

more than two or three predictors. One such model is the additive regression model, 

( ) ( )ijj

d

j
idii xfxxYE ∑

=

=
1

1 ,,/ L

                                                                                                                       (3)

 

( ) ( ) ( ) iiddiii xfxfxfY εα +++++= L22110  

Where the partial-regression functions fj(·) are assumed to be smooth, and are to be estimated from the data,

),,( 1 idii XXX L=  are random design, (iε ) are unobserved error variables, Where (��, … , ��) are smooth functions and  

( 0α ) is a constant. 

In this model we assume that all of the partial-regression functions are linear. 

4. KERNEL ESTIMATOR 

By replace the weight function for the naive estimator above by a kernel function we denoted a new function; it is 

the kernel estimator. The behavior of the estimator is dependent on the choice of width of the intervals used, and also to 

some extent on the starting position of the grid of intervals. 

• A smooth kernel function rather than a box is used as the basic building   block.  

• These smooth functions are centered directly over each observation. 

Because the kernel estimated is bona fide estimator and a symmetric, then probability density function for kernel 

estimator with exists the conditions defined by:   
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Then the kernel estimators or (local average) is equal to  
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Where ( iw ) denoted the weight function: 
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Notice:  ( ) 1
1

=∑
=

i

n

i
hi xw  

Now the (MSE) of the kernel density estimate can be expressed as: 

≡MSE  E ( ) ( )
2








 −
∧

xfxf h    

5. ESTIMATION 

There are several approaches to estimating nonparametric regression models, one of them is “The local 

polynomial simple regression”.  

Local polynomial It was studied by (Stone-1977, 1980, 1982) and (Cleveland -1979), which forwardly from 

simple to multiple regression, local polynomial regression generalizes easily to binary and other non-normal data, The aim 

of local polynomial simple regression is to estimate the regression function (µ|x) at a focal predictor value  

(x = 0x ). 

Local polynomial estimates are computed by weighted least squares regression. Let (x) be some fixed value at 

which we want to estimate f(x). We can approximate a smooth regression function f(x) in a neighborhood of the target 

value ( 0x ) by the polynomial:        

( ) ( ) ( ) i
p

ipiii exxxxxxy +−++−+−+= 0
2

02010 ... αααα
                                                                 (6) 

Suppose that locally the regression function (f) can be approximated. For (x) is a neighborhood of (0x ), by using 

Taylor's expansion we get:  

( ) ( )( ) ( ) j
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From equation (3) model f(x) locally by a simple polynomial model. This suggests using a locally weighted 
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polynomial regression to minimize with respect to ( pαα L,0 ),  ( ) ( )∑ ∑
= =

−








−−
n

i
ih

P

j

j
iji

xXKxXY
1

0

2

0
0α       

Or; 

( ) ( ){ }∑
=








 −
−−−−−

n

i

i
h

p
ipii h

xX
KxXxXY

1

02

0010 ααα L

                                                               
(8) 

Where K (.) denotes a kernel function and (h) is a bandwidth. 

Most commonly, the order of the local polynomial is taken as 

(p = 0, 1 ,2 ,…. ) . 

If setting p = 0, we get the kernel estimator or the local average estimator which is a special case of local 

polynomial. If (p = 1), that is, a local linear (fit) estimator. And if (p = 2) that is a local quadratic polynomial or local 

quadratic regression . . .  

6. APPLICATION PART 

In this part, we through the application of real data of Sulaimani city between latitude (34 - 36) degrees longitude 

(45 - 46) the degree of the globe and the rise of sea level (882 m) is located (355) km northeast of the capital Baghdad.  

The Information of this research gated from Meteorological department in the city as the average of (temperature, 

humidity, sun shine hour, wind speed and Station pressure) for period from (1/1/2011 to 31/12/2013), with different 

samples sizes (n1= 365, n2 = 730 and n3 = 1095). The daily average information that is including one response variable    

( iy ) and four explanatory variables (ijX ) which data descript as follows:  

=iy  Average of temperature 

=1iX
 
Average of humidity 

=2iX
 
Average of sun shine hour 

=3iX  Average of wind 

=4iX  Average of Station pressure 

The results of methods with statistical analysis as follows: 

Sample (1): 

First: Simple Regression 

Sample 1: The regression equation is: 

Temp. = 8.96 + 0.0514 (hum.) 
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Predictor         Coef.         SE Coef.         T           P 
Constant          8.9594      0.4365          20.53     0.000 
hum                 0.05141    0.05559          0.92     0.356 

Analysis of Variance 
Source                    DF           SS           MS           F          P 
Regression                 1         11.14       11.14       0.86     0.356 
Residual Error       363       4728.12      13.03 
Total                      364      4739.26 

 

 Second: The Polynomial Multiple Regression Result:   

     Temp. = - 0.149 - 0.698 (hum.) + 0.329 (press.) + 0.0486 (sun.) + 0.0325(wind.) 

     With MSE= 0.227, R2=0.77 and Analysis of Variance: 

Source                  DF       SS                MS              F            P 
Regression             4         278.056      69.514      305.70   0.000 
Residual Error   360            81.862      0.227 
Total                  364         359.918 

Sample (2): 

First:      The regression equation is:  temp. = 0.0008 - 0.837 (hum.) 

Predictor          Coef.            SE Coef.           T            P 
Constant           0.00076        0.02026         0.04       0.970 
humz               -0.83748        0.02027        -41.31     0.000 

Analysis of Variance 
Source                 DF         SS            MS            F              P 
Regression              1       512.05      512.05     1706.57   0.000 
Residual Error     729      218.73          0.30 
Total                   730       730.78 

 
Second: The Polynomial Multiple Regression Equation is: 

Temp. = - 0.0008 - 0.702 (hum.) + 0.399 (press.) + 0.0120 (sun.) + 0.0181 (win.) 

With MSE= 0.048, R2=0.84 and Analysis of Variance 

Source                   DF         SS             MS           F             P 
Regression               4         616.17      154.04     975.73     0.000 
Residual Error      726        114.62           0.16 
Total                     730        730.78 

SAMPLE (3): 

First: The simple regression equation is:   Temp. = 0.0005 - 0.628 (hum.) 

Predictor           Coef.          SE Coef.       T          P 
Constant           0.00046      0.01636       0.03      0.978 
humz              -0.62817       0.01222     -51.39     0.000 

Analysis of Variance 
Source                   DF        SS             MS           F               P 
Regression             1          774.80      774.80     2640.83  0.000 
Residual Error     1094      320.97          0.29 
Total                    1095     1095.77 

 
Second:  The regression equation is: 

Temp.  = - 0.0003 - 0.537 (hum.) - 0.0016 (sun.) + 0.0265 (wind.) + 0.416 (vap.) 
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With MSE=0.13, R2=0.86 and Analysis of Variance 

Source                 DF          SS           MS            F               P 
Regression            4         950.81      237.70     1789.06   0.000 
Residual Error     1091    144.96           0.13 
Total                  1095     1095.77 

 

Table 1: Comparing the Results between Linear and Nonparametric Regressions 
with (N1= 365 and H = 0.08, 0.1, 0.02) 

 
Simple 
Linear 

Regression 

Multiple 
Linear     

Regression 

Nonparametric With Simple Local 
Polynomial Regression 

Nonparametric  
Multiple 

Regression 
 

 
 
 
 
n� =

365    

R� MSE R� MSE Kernel fu. h= R� MSE R� MSE 

0.67 0.32 0.773 0.95  Epanechikov  0.08 0.75 0.245 0.99 0.088 
    Gaussian 0.08 0.75 0.238 0.99 43.252 
    Quadratic 0.08 0.74 0.248 0.99 0.072 
    N.W 0.08 0.75 0.242 0.99 0.012 

 

Epanechikov 0.1 0.75 0.240 0.985 0.014 
Gaussian 0.1 0.75 0.237 0.97 42.35 
Quadratic 0.1 0.74 0.248 0.988 0.012 
N.W 0.1 0.76 0.230 0.98 0.084 
Epanechikov 0.02 0.70 0.288 0.99 0.001 
Gaussian 0.02 0.73 0.262 0.99 53.66 
Quadratic 0.02 0.71 0.288 0.975 0.001 

  N.W 0.02 0.71 0.289 0.99 0.001 
 

From above table we can see, (R�	and	MSE	 appear that (N.W. and Gaussian, with bandwidth (h= 0.1) models are 

the best choose with simple local polynomial regression and also, appear that (N.W. and Epanechikov, with bandwidth        

(h= 0.02) models are the best choose with multiple local polynomial regression. 

 

(A)                                                                                               (B) 

Figure 1: A and B Represent the Test of Residual for Normality with (n1= 365) 
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Table 2: Comparing the Results between Linear and Nonparametric 
 Regressions with (N2= 730 and H= 0.08, 0.1, 0.02) 

 
Simple 
Linear 

Regression 

Multiple 
Linear     

Regression 

Nonparametric  Simple 
Regression 

Nonparametric  
Multiple 

Regression 
 

 
 
 
 
n� =

730    

R� MSE R� MSE Kernel fu. h= R� MSE R� MSE 

0.70 0.30 0.84 0.72 Epanechikov 0.08 0.77 0.227 0.99 0.004 
    Gaussian 0.08 0.78 0.222 0.99 20.29 
    Quadratic 0.08 0.77 0.230 0.98 0.004 
    N.W 0.08 0.79 0.221 0.97 0.001 

 

Epanechikov 0.1 0.77 0.224 0.98 0.020 
Gaussian 0.1 0.78 0.222 0.99 22.07 
Quadratic 0.1 0.77 0.226 0.99 1.69 
N.W 0.1 0.79 0.222 0.996 0.004 
Epanechikov 0.02 0.73 0.271 0.99 0.001 
Gaussian 0.02 0.76 0.237 0.99 20.75 
Quadratic 0.02 0.73 0.271 0.99 0.001 

  N.W 0.02 0.73 0.271 0.98 0.002 
 

From above table we can see, (R�	and	MSE	 appear that (N.W with (h= 0.1), (Epanechikov and Quadratic) with 

(h= 0.02) models are the best choose with simple local polynomial regression and also, appear that (N.W.) with (h= 0.1), 

Epanechikov and Quadratic with bandwidth (h= 0.02) models are the best choose with multiple polynomial regression. 

 

(A)                                                                    (B) 

Figure : 2 A and B Represent the Test of Residual for Normality With (n2= 730) 

Table 3: Comparing the Results between Linear and Nonparametric 
 Regressions with (n3= 1095 and h=0.08, 0.1 and 0.02) 

 
Simple 
Linear 

Regression 

Multiple 
Linear 

Regression 
Nonparametric  Simple Regression 

Nonparametric 
Multiple 

Regression 
 

n� =

1095  

R� MSE R� MSE Kernel fu. h= R� MSE R� MSE 

0.70 0.29 0.868 0. 65 Epanechikov 0.08 0.77 0.228 0.998 0.002 
    Gaussian 0.08 0.77 0.224 0.997 13.191 
    Quadratic 0.08 0.77 0.230 0.998 0.001 
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    N.W 0.08 0.78 0.226 0.99 0.003 

 

Epanechikov 0.1 0.77 0.227 0.99 2.071 
Gaussian 0.1 0.77 0.223 0.99 2.144 
Quadratic 0.1 0.77 0.228 0.99 3.029 
N.W 0.1 0.75 0.226 0.99 0.003 
Epanechikov 0.02 0.74 0.255 0.99 0.02 
Gaussian 0.02 0.76 0.237 0.99 0.02 
Quadratic 0.02 0.75 0.255 0.99 0.02 

  N.W 0.02 0.74 0.255 0.99 0.001 
 

From above table we can see, (R�	and	MSE	 appear that (N.W with h= 0.08) and (Gaussian with h= 0.1) models 

are the best choose with simple local polynomial regression and also, appear that (Quadratic and Epanechikov) with (h= 

0.08) and (N.W., Epanechikov, Quadratic) with bandwidth (h= 0.02) models are the best choose with multiple polynomial 

regression. 

 

(A) 

 

(B) 

Figure 3: A and B Represent the Test of Residual for Normality with (n3= 1095) 
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7. CONCLUSIONS 

1. Simple Regression 

I. The (N.W.) Nonparametric with simple local polynomial regression with bandwidth (h =0.1) is better than 

kernel functions Gaussian, Epanechikov, Quadratic and simple linear regression models with (n1= 365). 

II. By compare between (simple local polynomial estimators) by (N.W., Epanechikov, Gaussian and Quadratic ) 

Kernel functions for same bandwidth value and simple linear regression, we see that nonparametric regression estimators is 

the better. 

III. (N.W.) simple local polynomial with bandwidth (h =0.1) with the small sample size and (N.W.) with 

bandwidth (h =0.08) with the large sample size is the best choose  

2. Multiple (Local Polynomial) Regression 

I. II. The (N.W.) Nonparametric with multiple polynomial regression with bandwidth (h =0.02) is better than 

kernel functions Epanechikov, Gaussian, Quadratic and multiple linear regression models with (n1= 365). 

II. The (multiple polynomial estimators) with (N.W., Epanechikov, Gaussian and Quadratic) Kernel functions for 

same bandwidth value is better than multiple linear regression. 

III. In higher degree (order) of local polynomial (p= 4-dimenssions) we find (N.W.), Epanechikov and Quadratic) 

are the best estimators with minimum value of (MSE= 0.001) with all samples.  

IV. By compare between the Epanechikov and Gaussian function with Increasing bandwidth value the (MSE) 

increasing in both functions, 

V. The multiple polynomial model in any types of kernel functions with nonparametric regression is better than 

parametric regression by the values of (MSE andR�	. 

REFERENCES 

1. Adrian W. Bowman & Adelchi Azzalini -2004, (Applied Smoothing Techniques for Data Analysis), Oxford 

University press Inc. New York. 

2. Bernard. W. Silverman-1986, (Density Estimation for Statistics and Data Analysis) - Published in Monographs on 

Statistics and Applied Probability, London. 

3. John Fox-2000, (Multiple and Generalized nonparametric Regression), SAGE University paper (131). 

4. J. Fan & I. Gijbels-2003, (Local polynomial Modelling and its Applications) Chapman &Hall/ CRC /Taylor & 

Francis Group / Boca Raton Landon – New York. 

5. Larry Wasserman-2006, (All of Nonparametric Statistics), Springer Science +business Media. Inc //in the United 

States of America (MVY). 

6. Luke Keele -2008, (Semi parametric Regression for the Social Sciences) Ohio State University, U.S.A.(John 

Wiley & Sons, Lty The Atrium, Southern Gate, Chichester, West Sussex PO198SQ, England. 

7. P. J. Green & B.W. Silverman-2000, (Nonparametric Regression and Generalized Linear Models, Aroughness 

penalty approach .Boca Raton Landon New York Washington, D.C. 



Nonparametric Models by Using Smoothing Kernel Function with Application                                                                                                              25 

 
www.iaset.us                                                                                                                                                     editor@iaset.us 

8. Wolfgang Hardle-1994, (Applied Nonparametric Regression) Humboldt-University at Berlin at Institute.  

Spandauer Str. 1-D {10178 Berlin. 

9. Andreas Buja, Trevor Hastie, Robert Tibshirani –(1989), (linear Smoothers and additive models) Bellcore , AT& 

T Bell Laboratories and University of Toronto- The Annuls of Stahstics-1989,Vol. 17, No. 2, 453-555. 

10. Anders Stenman- (1999) (Model on Demand: Algorithms, Analysis and Applications) Linköping Studies in 

Science and Technology. Dissertations No. 571 Department of Electrical Engineering Linköping University 

Sweden. 

11. Armando Hoare-(2008) (Parametric, non-parametric and statisticalmodeling of stony coral reef data) - Theses and 

Dissertations USF Graduate School Graduate School, 6-1-2008 , University of South Florida. 

12. Balaji Rajagopalan & Upmanu Lall. (Locally Weighted Polynomial Estimation of Spatial Precipitation)-Journal of 

Geographic Information and Decision Analysis, vol. 2, no. 2, pp. 44-51, 1998. 

13. Dirk Ormoneit & Trevor Hastie – (1999), (Optimal Kernel Shapes for Local Linear Regression) grant DMS of 

Health grant. 

14. David Ruppert-(1996), (Local polynomial Regression and its applications in Environmental statistics), this 

research was supported by NSA Grant MDA 904-95-H-1025and NMS-9306196. 

15. Gery Geenens-(2011), (Curse of dimensionality and related issues in nonparametric functional regression) 

Statistics Surveys Vol. 5 (2011) 30–43 ISSN: 1935-7516 DOI: 10.1214/09-SS049 e-mail: ggeenens@unsw.edu. 

16. Jean D. Opsomer, David Ruppert –(1997) (Fitting a Bivariate Additive Model by Local polynomial Regression),          

The Annals of Statistics, Vol. 25,No. 1, 186-211. 

17. John Fox-(2002), (Nonparametric Regression)- Appendix to An R and SPLUS Companion to Applied Regression. 

January 2002. 

18. John Fox-(2004), (Nonparametric Regression) Department of Sociology McMaster University - February 2004.




