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ABSTRACT

The important issue in the main applications afistical represented by the distribution and tssuenptions for
the parent population (from which the sample iswaahas a specific distribution characteristicsb® represented
community representation, but in many cases doe&mow the form of the basis distribution so meedsstatistical
techniques do not depend on the distribution or assumptionsouf the phenomenon required study
(depend on the free distribution for the data), #rabe methods are thenparametric regression methodshat depend

directly on the data when estimating equation.

In this research was review some methods in nonpetr&c regression methods, like the method,
(Local polynomial regression) the some methodseftimating the smoothing parameters (with one ese¢hmethods have

been proposed to find an initial value for the sthom parameter with Kernel functions) , and themmpared the results
of the methods mentioned above, among themsebieg tests and statistical standards following: BMEMSE R?,
Rzadj , and F-statistic). That by application for thel @ata is the (elements of climate), daily averagaperatures for the

period from (1/1/2011 to 31/12/2013) registerechwtite Directorate of Meteorological and Seismolaggulaimani with

different sample sizes

(365, 730,1095), to show which the sample size wlittnate data and geography is more efficient wiimple
nonparametric regression model (Local Linear) andtipie regression model (Additive model ).To ackig¢he objective
of this study we will using statistical prograrhsaugh the program (SYSTA- 12).

KEYWORDS: Nonparametric Models by Using Smoothing Kernel Fiamcwith Application
1. INTRODUCTION

The important issue in statistical applicationkriswing distribution for population we need stuay&nowledge
of the properties of that community to be represgntommunity representation intact ,through statistmethods
commonly so over the past years were distributjpenrmmetric debated topic of many researchers asnaessodalities
parametric that the sample comes from the populatic known family of distributions, including noatnfamily
(Gaussian) or family (Gamma) and then work to estémthe parameters unknown to those families usie¢hods
(MLE, Moments, Bays) and other methods, or workstefer confidence limits or interval of confidenfoe the parameters
unknown, depending on the sample, but those assamspinentioned above are often strict becauselldision teachers

are supposed to not be necessarily the actuaibdistm.

The philosophy of statistics in terms of the medésmnof the application is to try different modelippenomena

models are what can be closer to reality, thatettis@mples measured the degree of strength degeodithe degree of
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16 Monem A. M & Samira M. S

convergence with statistical evidentiary propertidsen regression is the most widely used of alyses, modeling linear
broadest sense well understood in both developddiramddition there is a variety of techniques ukéd verify the

assumptions involved. However nonparametric reggrssms to provide a means of modeling and evearnvdppropriate
linear models not yet been brought into questioth smoothing techniques are still useful by enhanaicatter plots to

display the data infrastructure.

Today regression models are one of the most impbvarieties statistical theory and so for herdsearchers in
various fields of science and humanity of scientffolutions to their problems and because of tkerdé areas of work
had to be variations on the other. On the basthisfdivided regression models into two classesrd&d to the nature of
the data, namely (parametric regression modelsnangarametric regression models), and that's wiher@onparametric
regression need to restrictions or conditions ks, parametric models and this is precisely whalenthe tool of
nonparametric regression models very desirableesearchers to the fact that the actual data isametys have ideal
specifications. So these models evolved in manyasarand are used by scientists in the fields such as
(Computer Engineering to distinguish the picturel @ound, Geography, Physics, Economics, Medicimjr&hment,

etc...).

The parametric regression and nonparametric ragresspresent two different ways in the regressioalysis,
but this does not mean that the method preventagbef other. For example, the study of multiglgressions in general
will produce the problems dimensional suffered bystresearchers comply and prevent their progmsart a general

state of univariate to the binary variables anah thnelltivariate based on the developing modalit@sparametric analysis.
2.AIM OF THE PAPER

The aims of this paper to analysis nonparametridetso(Local polynomial regression model) compadiiid the

linear regression model with different sample saed different bandwidth (h).
3. THEORETICAL PART
Nonparametric Regression Models
The traditional nonlinear regression model (desatiim the Appendix on nonlinear regression) fits tiodel
yi = (B %) + &

Wheref = (B,, ...,Bp) is a vector of parameters to be estimated, and

%= (%1, ... ,Xx) is a vector of predictors for thé"() of (n) observations; the errors;j are assumed to be

normally and independently distributed with

Mean (0) and constant varianc&?). The function f(-), relating the average valuetiod response (y) to the

predictors, is specified in advance, as it is lim@ar regression model.

The general nonparametric regression model isemriti a similar way, but the function (f) is unsified
yi =f(%)+ g 1) (

=f (XillXiZ' ""Xik) + €j
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with E(€)=0,V(g)= 02, Covle,&,)=0 fori # |

The object of nonparametric regression is to esérttze regression function f (-) directly, ratheair to estimate
parameters. Most methods of nonparametric regmegsioassume that f (-) is a smooth, continuoustiomc as in

nonlinear regression. An important special casehefgeneral model is nonparametric simple regressitere there is
only one predictor:

yi = f(x;) + @)

Nonparametric simple regression is often calle@tter plot smoothing’ because an important appboais to
tracing a smooth curve through a scatter plot of (yagainst (x) Because it is difficult to fit the general nonparetric
regression model when there are many predictosbecause it is difficult to display the fitted model when there are

more than two or three predictors. One such model isthe additive regression model,

d

E(Yi/m,~--,>qd)=§ fj(&,-)

®3)
Yo =a,+ fl(Xi1)+ fz(xiz)""" + (Xid)+ &
Where the partial-regression functions fj(-) arsuased to be smooth, and are to be estimated frendala,
X, =(X,;,-+, X,q) are random designg&( ) are unobserved error variables, Whefg.(, f;) are smooth functions and

(@,) is a constant.

In this model we assume that all of the partiakesgion functions are linear.

4. KERNEL ESTIMATOR

By replace the weight function for the naive estonabove by a kernel function we denoted a newtfan; it is
the kernel estimator. The behavior of the estim@atependent on the choice of width of the intlsrwesed, and also to

some extent on the starting position of the grithtdrvals.
» A smooth kernel function rather than a box is usgthe basic building block.
e These smooth functions are centered directly ozeh @bservation.

Because the kernel estimated is bona fide estingatdra symmetric, then probability density functfonkernel
estimator with exists the conditions defined by:

?(x):iiK(LXij or

nh = h
U (0= 13 [ %=X,
fh(x)_n;hK[ - j 4)

Then the kernel estimators or (local average) imktp
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n
= z Wi (X)Yi
i=1
Where (W ) denoted the weight function:

e

Whi (X

®)

Notice: Zn: Wi (Xi ) =1

i=1

Now the (MSE) of the kernel density estimate caexgessed as:

MSE = E( £ (-t (x)jz

5. ESTIMATION

There are several approaches to estimating nonp#éianregression models, one of them iEhé local

polynomial simple regression”.

Local polynomial It was studied by (Stone-1977, 098982) and (Cleveland -1979), which forwardlynfro
simple to multiple regression, local polynomialnegsion generalizes easily to binary and othernmmal data, The aim

of local polynomial simple regression is to estientlite regression functiop|k) at a focal predictor value
(x=Xy)-

Local polynomial estimates are computed by weighéast squares regression. Let (x) be some fixéakevat

which we want to estimatéx). We can approximate a smooth regression fund{ix) in a neighborhood of the target

value (X, ) by the polynomial:

— 2 p
Vi =0 +a, (% — %) +a,(x =) +. 4 a,(x —x)° +e ©
Suppose that locally the regression function (f) ba approximated. For (x) is a neighborhood X, by using
Taylor's expansion we get:
p (D o
e _ |
f(x) =2 (x =)’ =;aj(x-xo)' (7)
j= : j=

From equation (3) moddlx) locally by a simple polynomial model. This segts using a locally weighted
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2
n P .
polynomial regression to minimize with respect @o(, - d'p ), Z{Yl - ZO'J- (Xi - XO)'} Kh(Xi - XO)
i=1 j=0

Or;

IZnI:{Y. —a, -y (X, = %)= a, (X, ‘%)ﬂ%[%)

Where K (.) denotes a kernel function and (h) imadwidth.

(8)

Most commonly, the order of the local polynomialaken as
(p=0,1,2,....).

If setting p = 0, we get the kernel estimator og thcal average estimator which is a special cdsleaal
polynomial. If (p = 1), that is, a local lineartffiestimator. And if (p = 2) that is a local quailrgpolynomial or local

guadratic regression . . .
6. APPLICATION PART

In this part, we through the application of reatadaf Sulaimani city between latitude (34 - 36) &g longitude
(45 - 46) the degree of the globe and the risecaflsvel (882 m) is located (355) km northeasthef ¢apital Baghdad.
The Information of this research gated from Metémgiwal department in the city as the average eMmfterature,
humidity, sun shine hour, wind speed and Staticgsgure) for period from (1/1/2011 to 31/12/2013ijthwdifferent

samples sizes (n1= 365, n2 = 730 and n3 = 109%) dally average information that is including oasponse&ariable

(Y;) and four explanatory variable:%(gj ) which data descript as follows:

Y, = Average of temperature

Xi; = Average of humidity

X, = Average of sun shine hour
X3 = Average of wind

X, = Average of Station pressure

The results of methods with statistical analysifodews:
Sample (1):

First: Simple Regression

Sample 1:The regression equation is:

Temp. = 8.96 + 0.0514 (hum.)
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Predictor Coef. SE Coef. T P

Constant 8.9594  0.4365 20.53.000

hum 0.05141 0.05559 20.90.356
Analysis of Variance

Source DF SS MS F P

Regression 1 11.14 141 0.86 0.356

Residual Error 363 4728.12  13.03

Total 364 4739.26

Second: The Polynomial Multiple Regression Result:
Temp. =-0.149 - 0.698 (hum.) + 0.329 (pnes).0486 (sun.) + 0.0325(wind.)
With MSE= 0.227, &0.77 and Analysis of Variance:

Source DF SS MS F P
Regression 4 278.056 69.51305.70 0.000
Residual Error 360 81.862 0.227
Total 364 359.918
Sample (2):
First:  The regression equation is: temp. = 0.000837 (hum.)
Predictor Coef. SE Coef. T P
Constant 0.00076 0.02026 .040 0.970
humz -0.83748 0.02027 41.31 0.000
Analysis of Variance
Source DF SS MS F P
Regression 1 512.05 512.05706.57 0.000
Residual Error 729  218.73 0.30
Total 730 730.78

Second: The Polynomial Multiple Regression Equatiofis:
Temp. =-0.0008 - 0.702 (hum.) + 0.399 (pres€)04.20 (sun.) + 0.0181 (win.)

With MSE= 0.048, B=0.84 and Analysis of Variance

Source DF SS MS F P

Regression 4 616.17 @584. 975.73 0.000

Residual Error 726 114.62 60.1

Total 730 730.78

SAMPLE (3):
First: The simple regression equation is: Temp. = 0.0600628 (hum.)
Predictor Coef. SE Coef. T P
Constant 0.00046 0.01636 0.08.978
humz -0.62817 0.01222 -51.30.000
Analysis of Variance

Source DF SS SM F P
Regression 1 774.80  7704.82640.83 0.000
Residual Error 1094  320.97 0.29

Total 1095 1095.77

Second: The regression equation i
Temp. =-0.0003 - 0.537 (hum.) -

Impact Factor (JCC): 1.8673
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With MSE=0.13, B=0.86 and Analysis of Variance

Source DF SS MS F P
Regression 4 950.81 237.70789.06 0.000
Residual Error 1091 144.96 0.13

Total 1095 1095.77

Table 1: Comparing the Results between Linear and dhparametric Regressions
with (N1= 365 and H = 0.08, 0.1, 0.02)

. : Nonparametric
fieraF:? MLlIJrlltéF:re Nonparametric_ With Simp!e Local Multiple_

Regression | Regression Polynomial Regression Regression
R? | MSE| R? | MSE | Kernel fu. h= R? | MSE R? MSE
0.67 | 0.32| 0.773] 0.95 Epanechikgw.08 | 0.75| 0.245| 0.99 0.088

Gaussian 0.08 0.7% 0.238 0.99 43.25

Quadratic 0.08 0.74 0.248 0.99 0.072

N.W 0.08| 0.75| 0.242 0.99 0.012

Epanechikov | 0.1 0.7 0.240 0.985 0.014

Gaussian 0.1 0.7 0.23F 0.97 42.35

2165‘ Quadratic 0.1 | 074 0248 098§ 0.012
N.W 0.1 | 0.76| 0.230] 0.98 0.084

Epanechikov | 0.02] 0.7 0.288 0.99 0.001

Gaussian 0.02 0.73 0.26p 0.99 53.66

Quadratic 0.02] 0.71] 0.288 0.975 0.001

N.W 0.02| 0.71| 0.289 0.99 0.001

21

From above table we can seR? and MSE) appear that (N.W. and Gaussian, with bandwidthQi3 models are

the best choose with simple local polynomial regigas and also, appear that (N.W. and Epanechikdth, andwidth

(h=0.02) models are the best choose with multgatal polynomial regression.
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Figure 1: A and B Represent the Test of Residual fdNormality with (n1= 365)
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Table 2: Comparing the Results between Linear and dhparametric
Regressions with (N2= 730 and H= 0.08, 0.1, 0.02)
: : Nonparametric
filrr;%lre I\f_lljrlltégf Nonparametric Simple Multiple
Regression | Regression G G
R? | MSE| R? MSE | Kernel fu. h= R? | MSE R? MSE
0.70 | 0.30| 0.84 | 0.72 Epanechikoy 0.08 0.f7 0.227 9 0.9 0.004
Gaussian 0.08 0.78 0.222 0.99 20.2¢
Quadratic 0.08 0.7 0.23p 0.98 0.004
N.W 0.08| 0.79| 0.221 0.97 0.001
Epanechikov | 0.1 0.777 0.224 0.98 0.020
Gaussian 01| 0.78 0.222 0.99 22.07
223 o Quadratic 01| 077 0226 099 169
N.W 0.1 | 0.79| 0.222] 0.996| 0.004
Epanechikov | 0.02] 0.73 0.271 0.99 0.001
Gaussian 0.027 0.76 0.237 0.99 20.75
Quadratic 0.02| 0.73 0.271 0.99 0.001
N.W 0.02| 0.73| 0.271 0.98 0.002

From above table we can seR? and MSE) appear that (N.W with (h= 0.1), (Epanechikov andh@ratic) with
(h=0.02) models are the best choose with simplallpolynomial regression and also, appear that/(Nwith (h= 0.1),

Epanechikov and Quadratic with bandwidth (h= 0:@2fels are the best choose with multiple polynomggtession.
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Figure : 2 A and B Represent the Test of Residuabf Normality With (n2= 730)

Table 3: Comparing the Results between Linear and dhparametric
Regressions with (n3= 1095 and h=0.08, 0.1 and 2).0

Simple Multiple Nor':/pl)a;?rlr;etrlc
Linear Linear Nonparametric Simple Regression Re rer)sion
Regression | Regression 9
R? | MSE R? MSE | Kernel fu. h= R? | MSE R? MSE
n;= |0.70 | 0.29| 0.868| 0.65 Epanechikoyv 0.8 077 0.228998 | 0.002
1095 Gaussian 004 077 0.224 0.997 13.191
Quadratic 0.08 0.77 0.23D 0.999 0.001
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| \ \ N.W 0.08] 0.78] 0.224 0.99 | 0.003
Epanechikov | 0.1 0.777 0.22Y 0.99 2.071
Gaussian 01| 077 0228 099 2144
Quadratic 01 ] 077 0228 0.99| 3.029
N.W 0.1 [ 075] 0.226] 0.99 | 0.003
Epanechikov | 0.02] 0.74 0.255 0.99 0.02
Gaussian 0.02 0.7 0.23f 0.99] 0.02
Quadratic 0.02] 0.75 0.255 0.99] 0.02
N.W 0.02] 0.74] 0.255 0.99 | 0.001

From above table we can seR? and MSE) appear that (N.W with h= 0.08) and (Gaussian With0.1) models
are the best choose with simple local polynomigtession and also, appear that (Quadratic and Ep#woe) with (h=
0.08) and (N.W., Epanechikov, Quadratic) with baiutlv(h= 0.02) models are the best choose withipialpolynomial

regression.
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Figure 3: A and B Represent the Test of Residual fdNormality with (n3= 1095)
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7. CONCLUSIONS
1. Simple Regression
I. The (N.W.) Nonparametric with simple local pobmial regression with bandwidth (h =0.1) is bettean

kernel functions Gaussian, Epanechikov, Quadraticsample linear regression models with (n1= 365).

II. By compare between (simple local polynomialirestors) by (N.W., Epanechikov, Gaussian and Quad)a
Kernel functions for same bandwidth value and sintiplear regression, we see that nonparametriessgm estimators is
the better.

ll. (N.W.) simple local polynomial with bandwidtih =0.1) with the small sample size and (N.W.) with
bandwidth (h =0.08) with the large sample sizénéshiest choose

2. Multiple (Local Polynomial) Regression

[. Il. The (N.W.) Nonparametric with multiple polgmial regression with bandwidth (h =0.02) is bettsan

kernel functions Epanechikov, Gaussian, Quadraiicraultiple linear regression models with (n1= 365)

[I. The (multiple polynomial estimators) with (N.\\Epanechikov, Gaussian and Quadratic) Kernel fanstfor

same bandwidth value is better than multiple linegression.

lll. In higher degree (order) of local polynomig 4-dimenssions) we find (N.W.), Epanechikov andgratic)
are the best estimators with minimum value of (MSE301) with all samples.

IV. By compare between the Epanechikov and Gaudsiaction with Increasing bandwidth value the (MSE)

increasing in both functions,

V. The multiple polynomial model in any types ofriel functions with nonparametric regression iddyethan

parametric regression by the values of (MSER&Nd
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